
ISSN 0005-1179 (print), ISSN 1608-3032 (online), Automation and Remote Control, 2024, Vol. 85, No. 7, pp. 686–700.
c© The Author(s), 2024 published by Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 2024.
Russian Text c© The Author(s), 2024, published in Avtomatika i Telemekhanika, 2024, No. 7, pp. 42–60.

NONLINEAR SYSTEMS

Optimal Control of Harvesting

of a Distributed Renewable Resource

on the Earth’s Surface

D. V. Tunitsky
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia

e-mail: dtunitsky@yahoo.com

Received May 3, 2024

Revised May 27, 2024

Accepted May 30, 2024
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1. INTRODUCTION

Two-dimensional (2D) manifolds homeomorphic to a sphere are commonly used as a mathemat-
ical model of the Earth’s surface. The dynamics of a renewable resource distributed on the Earth’s
surface can be modeled by a second-order semilinear evolutionary equation on a 2D sphere. In
local coordinates, it has the form

∂q

∂t
−

2∑
l,m=1

∂

∂xl

(
al,m(x)

∂q

∂xm

)
= A(x)q −B(x)q2, al,m(x) = am,l(x), (1)

where the matrix a characterizes the resource diffusion, and the coefficients A and B are the resource
renewal and saturation rates of the environment. Essentially, equation (1) combines two classical
models: the Verhulst logistic model [1] and the Fourier heat propagation model [2].

Equations of the form (1) arise when modeling various reaction–diffusion processes in a dis-
tributed environment. One example is the famous model proposed by A.N. Kolmogorov, G.I. Petro-
vskii, and N.S. Piskunov [3] and R.A. Fischer [4]. Information about other models, the history and
bibliography of the works on this topic can be found in [5]. Also, the interested reader is referred
to the monograph [6], covering several applied aspects.

Second-order semilinear evolutionary equations in Euclidean space domains have been studied
quite thoroughly; for example, see [7–9]. On closed manifolds, particularly spheres, they have been
investigated to a lesser extent. It is appropriate to mention the papers devoted to the equations
with periodically fragmented coefficients [5, 10] (in fact, equations on a torus). This case, important
from an applied point of view, occurs when modeling periodic media. Of course, equations of the
form (1) on a 2D sphere are also of significant interest: this is a standard model of the Earth’s
surface used in applications.

686



OPTIMAL CONTROL OF HARVESTING 687

Note that many applied problems lead to equations of the type (1) with discontinuous coeffi-
cients. In particular, this is characteristic of optimal control problems. Therefore, it is desirable
to choose a class of admissible solutions to construct a satisfactory theory of the corresponding
equations with minimal regularity requirements for their coefficients. In this paper, such a class
consists of weak solutions. In the class of weak solutions, it is possible to study equations of the
form (1) on a 2D sphere with fairly light regularity requirements for their coefficients.

2. FUNCTION SPACES AND EVOLUTIONARY EQUATIONS

2.1. Function Spaces

Let S2 be a 2D sphere of unit radius, {(y1, y2, y3) ∈ R
3 | (y1)2 + (y2)2 + (y3)2 = 1}, standardly

embedded in the 3D Euclidean space R
3. The stereographic projection

h : S2\(0, 0, 1) � (y1, y2, y3) → (y1, y2)

1− y3
∈ R

2

relative to the pole (0, 0, 1) specifies a local coordinate system defined on S
2 everywhere except

the pole [11] (lecture 6). An embedding in the Euclidean space R
3 induces on S

2 a Riemannian
metric g, whose inverse image relative to h−1 has the form

(h−1)∗g = 4
(dx1)2 + (dx2)2

((x1)2 + (x2)2 + 1)2
.

Here h−1 is a mapping inverse to the stereographic projection, i.e.,

h−1 : R2 � (x1, x2) → 1

(x1)2 + (x2)2 + 1
(2x1, 2x2, (x1)2 + (x2)2 − 1) ∈ S

2. (2)

The metric g defined on the tangent bundle TS2 admits a natural extension to tensor bun-

dles (TS2)
⊗m ⊗

(T ∗
S
2)
⊗l

, m, l = 0, 1, 2, . . . , which will be denoted by the same symbol g. On

(TS2)
⊗0 ⊗

(T ∗
S
2)
⊗0

= S
2 × R, the metric is g(r1, r2) = r1r2 for r1, r2 ∈ R. Also, g induces on S

2

a complete metric space structure and a measure μ = μg, whose image relative to the stereographic
projection has the form

d(μ ◦ h) = 4dx1dx2

((x1)2 + (x2)2 + 1)2
. (3)

These structures are used to build the Lebesgue spaces of functions and tensor fields,

Lp(S2) and Lp
(
(TS2)

⊗m ⊗
(T ∗

S
2)
⊗l)

, where p � 1 and m, l = 0, 1, 2, . . . , as well as the Sobolev

spaces W 1,p(S2) and W 1,p
(
(TS2)

⊗m ⊗
(T ∗

S
2)
⊗l)

[12, Ch. 2] and the Hölder spaces Cα(S2) and

Cα((TS2)
⊗m ⊗

(T ∗
S
2)
⊗l

), 0 < α � 1 [13, Sec. 10.2.4; 14; 15; 16, §1]. For this purpose, the stere-
ographic coordinates (2) can be applied. For example, the function spaces Lp(S2) on a sphere and
Lp(R2, μ ◦ h) on the plane with the measure (3) are isometric for p � 1.

Consider real-valued measurable functions u and v defined on S
2 and let

ess sup
x∈S2

u(x) = inf
S⊆S2,
μ(S)=0

sup
x∈S2\S

u(x),

ess inf
x∈S2

u(x) = sup
S⊆S2,
μ(S)=0

inf
x∈S2\S

u(x), 〈u, v〉 =
∫
S2

uvdμ.
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688 TUNITSKY

IfB is a Banach space with a norm ‖ · ‖B, then for fixed T0 ∈ (0,+∞) and T1 ∈ (0,+∞], T0 < T1,
the spaces Lp([T0, T1);B) with the norms

‖q‖Lp([T0,T1);B) =

⎛⎜⎝ T1∫
T0

‖q(t)‖pBdt
⎞⎟⎠

1
p

, p � 1,

‖q‖L∞([T0,T1);B) = ess sup
t∈[T0,T1)

‖q(t)‖B

are also Banach spaces; see [17, Ch. III, §1] and [18, Ch. II, §2]. The intersection

W ([T0, T1);X) = L2((T0, T1);W
p,1(X)) ∩ L∞([T0, T1);L

2(X))

is also a Banach space with the norm

‖q‖2W ([T0,T1);X) = ess sup
t∈[T0,T1)

〈q(t), q(t)〉 +
T1∫

T0

〈g(dq(t), dq(t)), 1〉dt.

For brevity, we will use the abbreviation a.e. whenever some properties are valid almost every-
where in the measure μ on S

2, see (3).

2.2. Evolutionary Equations

Along with g, let another metric a be defined on the sphere S
2. Assume that this metric is

measurable and there exist a0, a1 ∈ (0,+∞) such that

a0g(η, η) � a(η, η) � a1g(η, η), η ∈ T ∗
S
2, a.e. (4)

In the stereographic coordinates x1 and x2 (2), the estimate (4) has the form

4a0(η
2
1 + η22)

((x1)2 + (x2)2 + 1)2
� a1,1(t)η21 + 2a1,2(t)η1η2 + a2,2(t)η22 � 4a1(η

2
1 + η22)

((x1)2 + (x2)2 + 1)2
.

Consider the differential operator d∗a,g : C∞(T ∗
S
2) � w → d∗a,gw ∈ C∞(S2) adjoint to the exterior

differentiation operator d with respect to the metrics g and a, i.e.,

〈a(du, ω), 1〉g = 〈u, d∗a,gω〉g, u ∈ C∞(S2), ω ∈ C∞(T ∗
S
2);

for details, see [19, Ch. VIII, §1]. In the system of the stereographic coordinates x1 and x2 (2),

d∗a(t),gω = −((x1)2 + (x2)2 + 1)2
2∑

l,m=1

∂

∂xl
a(dxl, dxm)

((x1)2 + (x2)2 + 1)2
ω

(
∂

∂xm

)
.

Given a function u ∈ C∞(S2), we define the geometric Laplacian (the Laplace–de Rahm operator),
i.e., the linear second-order differential operator [20, Ch. IV, §5]

� = �a,g = d∗a,g ◦ d. (5)

Due to the estimate (4), the operator (5) is uniformly elliptic on S
2.

Hence, the second-order evolutionary equation

∂q

∂t
+�q = (A(x) − u(x))q −B(x)q2 (6)
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is parabolic on S
2. In the stereographic coordinates x1 and x2 (2), it takes the form

∂q

∂t
− ((x1)2 + (x2)2 + 1)2

2∑
l,m=1

∂

∂xl
a(dxl, dxm)

((x1)2 + (x2)2 + 1)2
∂u

∂xm
= (A(x)− u(x))q −B(x)q2;

cf. (1). The unknown function q = q(t, x) corresponds to the density of the renewable resource
under consideration at a point x of the sphere S2 at a time instant t, the metric a characterizes the
resource diffusion, the function u is the control of its stationary (permanent) harvesting, and the
coefficients A and B are the resource renewal and saturation rates of the environment.

Weak solutions, subsolutions, and supersolutions are defined in a conventional way [8, Ch. VI,
§1, 5] and [9, §1.5]. In particular, a weak solution of equation (6) on the half-open interval [T0, T1)
is a function q ∈W ([T0, T1);S

2) such that q2 ∈ L2([T0, T1)× S
2) and

〈q, p〉(t) +
t∫

T0

(
〈dq, dp〉L2(T ∗S2) − 〈q, p′〉

)
(τ)dτ = 〈q, p〉(0) +

t∫
T0

〈(A− u)q −Bq2, p〉(τ)dτ

for each p ∈ C∞([T0, T1);S
2) and t ∈ [T0, T1). A weak solution q of equation (1.5) that takes a given

initial value of the resource density,

q(T0) = q0, q0 ∈ L∞(S2), q0 � 0 a.e., (7)

is called a weak solution of the Cauchy problem (6), (7) on [T0, T1).

In the presentation below, all solutions, subsolutions, and supersolutions are assumed to be
weak, and the adjective “weak” is omitted for brevity.

3. PERIODIC IMPULSE HARVESTING AND CONTROLLED SOLUTIONS

3.1. Periodic Impulse Harvesting

The periodic impulse harvesting of a renewable resource is mathematically modeled by the
solution q of the Cauchy problem (6), (7) with the additionally imposed conditions

q(kT ) = sq(kT−), k = 1, 2, . . . . (8)

Here T ∈ (0,+∞) is a given period, and the measurable factor s, 0 � s � 1 a.e., characterizes the
impulse harvesting rate. The solution of problem (6), (8) is a function q ∈ L∞([0,+∞) × S

2) that
resolves equation (6) on [kT, (k + 1)T ), has the left-hand limit values q(kT−), and satisfies a.e.
equalities (8). If for T0 = 0 this solution takes a.e. the initial value (7), then it represents the
solution of problem (6), (7), (8). The solution of problem (6), (8) is said to be periodic if

q(t+ T ) = q(t), t ∈ [0,+∞). (9)

We define the admissible sets U and S of stationary and impulse controls

U = {u ∈ L∞(S2) | U1 � u � U2},
S = {e−βv | v ∈ L∞(S2), V1 � v � V2, 〈1, v〉 � E}, (10)

where U1, U2, V1, V2, β ∈ L∞(S2) and E ∈ [0,+∞). Here U1 and U2 characterize the constraints on
the possible density of stationary resource harvesting, E is the admissible harvesting effort, and the
limits V1 and V2 describe the minimum technically feasible density of impulse harvesting and its
maximum possible density given the available physical capacity of the environment and ecological
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690 TUNITSKY

constraints. In essence, V1(x) and V2(x) are the minimum and maximum efforts that can be applied
at a point x to achieve the goals. The impulse factor form s = e−β(x)v(x) in (8) stems from the
search theory [21–23]. The factor β(x) in the exponent characterizes the complexity of detecting
and extracting the resource at a point x ∈ S

2, and v(x) is the effort applied.

Remark 1. As is easily checked, the sets of admissible stationary U and impulse S controls (10)
are convex, closed in L2(S2), and bounded in L∞(S2). Since the space L2(S2) is reflexive, by
the Eberlein–Šmulyan theorem, the sets bounded in the norm ‖ · ‖L2(S2) are sequentially weakly
precompact [24, App. to Ch. V, §4]. In addition, each convex and closed subset of L2(S2) is weakly
closed [25, Sec. 2.9]. Therefore, the sets of admissible controls U and S are sequentially weakly
compact. A subset in L2(S2) is weakly compact if and only if it is sequentially weakly compact,
and sequentially weakly precompact sets are norm-bounded [25, Sec. 2.9]. Therefore, the sets U
and S are weakly sequentially compact in L2(S2) [24, App. to Ch. V, §4 ].

Remark 2. Obviously, q = 0 is a periodic subsolution of problem (6), (7), (8). Due to the con-
straints imposed above on equation (6) and the admissible controls, B � B0 > 0 and 0 � s � 1 a.e.
Hence, the constant function q = c is a periodic supersolution of problem (6), (7), (8) for
c � Q(‖ q0 ‖L∞(S2)), where

Q : R � r → max

{
r,

1

B0
(‖A‖L∞(S2) +max{‖U1‖L∞(S2), ‖U2‖L∞(S2)})

}
∈ R. (11)

3.2. Controlled Solutions

The solutions q = q(t; q0, u, s) of problem (6), (7), (8) and the periodic solutions q = q(t;u, s) of
problem (6), (8) with admissible controls u ∈ U and s ∈ S will be called controlled solutions. They
possess the following properties.

Theorem 1. Assume that the metric a is measurable and satisfies the estimate (4) and the coef-
ficients A,B ∈ L∞(S2) and B � B0 a.e. for some B0 ∈ (0,+∞). Then:

(a) For any u ∈ U, s ∈ S, there exists a unique controlled solution q = q(t; q0, u, s). In addition,
q ∈ C([(k − 1)T, kT );L2(S2)), k = 0, 1, . . . , and

0 � q(t; q0, u, s) � Q
(
‖ q0‖L∞(S2)

)
, t ∈ [0,+∞), (12)

where Q is the function (11), and for any ε ∈ (0, T ) there exists a number α, 0 < α � 1, such that

q ∈ Cα

( ∞⋃
k=1

[(k − 1)T + ε, kT )× S
2

)
.

(b) If sequences {qm} ⊆ L∞(S2), {um} ⊆ U, and {sm} ⊆ S weakly converge in L2(S2), i.e.,
qm ⇀ q0, um ⇀ u0, and sm ⇀ s0, and qm � 0 and qm 	= 0 a.e., then the weak convergence

lim
m→+∞

q (· ; qm, um, sm) = q (· ; q0, u0, s0)

holds in the spaces L2([0, NT );W 1,2(S2)) for any N = 1, 2, . . . and in the norms
‖ · ‖C(∪N

k=1
[(k−1)T+ε,kT )×S2) for any ε ∈ (0, T ).

(c) For any u ∈ U and s ∈ S, there exists a unique controlled periodic solution q = q∞(t;u, s)
such that

lim
t→+∞

‖q(t; q0, u, s)− q∞(t;u, s)‖L∞(S2) = 0, ‖q0‖L∞(S2) > 0.
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(d) If sequences {um} ⊆ U and {sm} ⊆ S weakly converge in L2(S2), i.e., um ⇀ u0 and sm ⇀ s0,
then the periodic solutions from item (c) have the weak convergence

lim
m→+∞

q∞(· ;um, sm) = q∞(· ;u0, s0)

in the space L2((0, T );W 1,2(S2)) and in the norms ‖ · ‖C([ε,T )×S2) for any ε ∈ (0, T ).

The proof is given in subsection 4.5.

Remark 3. There exist at most two periodic solutions q of problem (6), (8). According to
Remark 2, one of them is the trivial solution q = 0. If q∞ = 0, then by Theorem 1 the other
disappears; if q∞ 	= 0, then the third does the same.

4. PROBLEM STATEMENT, THE MAIN RESULT, AND FINDINGS

4.1. Problem Statement

According to assertion (a) of Theorem 1, the following functional is well-defined for the admis-
sible sets of stationary U and impulse S controls (10):

F : {q0 ∈ L∞(S2)|q0 � 0 a.e.} × U×S � (q0, u, s)

−→ lim
t→+∞

1

t

⎛⎝ t∫
0

〈q(τ ; q0, u, s), u〉dτ +
∑

0<kT�t

〈q(kT−; q0, u, s), 1− s〉
⎞⎠ ∈ R,

(13)

where q = q(t; q0, u, s) is a controlled solution. Its value is the time-averaged sum of the stationary
(first term) and impulse (second term) resource harvestings.

Let us pose the following problem: It is required to establish the existence of stationary u0 ∈ U
and impulse s0 ∈ S controls that maximize the functional F (13), and investigate the impact of the
initial value q0 (7) on F (q0, u0, s0), cf. [26] and [27].

4.2. The Main Result

Using Theorem 1, we provide a comprehensive solution of this problem. Namely, the following
result is true; cf. [28].

Theorem 2. Assume that all conditions of Theorem 1 are satisfied. Then:

(a) For any initial values q0 (7), ‖q0‖L∞(S2) > 0, and admissible controls u ∈ U, s ∈ S, we have
the equality

F (q0, u, s) = F (q∞(0;u, s), u, s) =
1

T

⎛⎝ T∫
0

〈q∞(τ ;u, s), u〉dτ + 〈q∞(T−;u, s), 1 − s〉
⎞⎠ . (14)

(b) If sequences {um} ⊆ U and {sm} ⊆ S weakly converge in L2(S2), i.e., um ⇀ u0 and sm ⇀ s0,
and a sequence {qm} ⊆ L∞(S2) is such that qm � 0 and qm 	= 0 a.e., then

lim
m→+∞

F (qm, um, sm) = F (q∞(0;u0, s0), u0, s0).

(c) The functional F (13) is bounded and its supremum is achieved at admissible controls u0 ∈ U
and s0 ∈ S so that

supF (q0, u, s) = F (q∞(0; u0, s0), u0, s0).
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Proof.

(a) Clearly, the value of the functional F (q0, u, s) will not change when replacing the zero
lower limits of integration and summation in its definition (13) by any T0 ∈ [0,+∞). Next, for
controlled solutions q = q(t; q0, u, s) of problem (6), (7), (8) and a periodic solution q = q∞(t;u, s)
of problem (6), (8), we have∣∣∣∣∣∣∣

t∫
T0

〈q(τ)− q∞(τ), u〉dτ +
∑

T0<kT�t

〈q(kT−)− q∞(kT−), 1 − s〉
∣∣∣∣∣∣∣

�
(
t ‖ u ‖L∞(S2) sup

τ�T0

‖q(τ)− q∞(τ)‖L∞(S2)+[t]‖1− s‖L∞(S2) sup
kT�T0

‖q(kT−)− q∞(kT−)‖L∞(S2)

)
� t

(
max{‖U1‖L∞(S2), ‖U2‖L∞(S2)}+ 1

)
sup
τ�T0

‖q(τ) − q∞(τ)‖L∞(S2), t ∈ [T0,+∞).

By assertion (c) of Theorem 1, it follows that |F (q0, u, s)− F (q∞(0;u, s), u, s)| = 0. Due to defini-
tion (13), F (q∞(0;u, s), u, s) equals the right-hand side of equality (14).

(b) According to assertion (a), we have

F (q0, um, sm) =
1

T

⎛⎝ T∫
0

〈q∞(τ ;um, sm), um〉dτ + 〈q∞(T−;um, sm), 1 − sm〉
⎞⎠ .

By assertion (d) of Theorem 1, it is possible to pass to the limit on the right-hand side of this
expression as m → +∞ [29, Ch. 1, §5]. As a result, in view of (14), we arrive at the desired
conclusion.

(c) There exist sequences of initial values {qm} ⊆ L∞(S2) and admissible controls {um} ⊆ U and
{sm} ⊆ S such that

supF (q0, u, s) = lim
m→+∞

F (qm, um, sm).

Due to Remark 1, the sets of admissible controls U andS are sequentially weakly compact in L2(S2).
Hence, there exist subsequences {uml

} and {sml
} that weakly converge in L2(S2), i.e., uml

⇀ u0 ∈ U
and sml

⇀ s0 ∈ S. By assertion (b), we obtain

supF (q0, u, s) = lim
m→+∞

F (qm, um, sm) = F (q∞(0;u0, s0), u0, s0).

The proof of Theorem 2 is complete.

4.3. Findings

According to assertion (c) of Theorem 1, after choosing admissible stationary and impulse con-
trols, the renewable resource density will uniformly tend to a unique limit state for any nonzero
initial values. According to assertion (c) of Theorem 2, admissible controls can be chosen so that
for each exploitation cycle, the amount of resource harvesting coincides with the maximum possible
time-averaged amount of resource harvesting. In other words, with the optimal control of renewable
resource exploitation, any nonzero initial resource density will tend to a limiting state ensuring the
maximum of resource harvesting in one exploitation cycle.
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5. PROOF OF THEOREM 1

5.1. Auxiliary Assertions

According to Remark 1, the subsolution of problem (6), (7), (8) is the zero function q = 0, and
the supersolution is the constant function q = Q(‖q0‖L∞(S2)). Therefore, the known results for
second-order semilinear parabolic equations on a sphere [30–32] imply the following.

Lemma 1. Assume that all conditions of Theorem 1 are satisfied. Then for each u ∈ L∞(S2)
there exists a unique solution q = q( · ; q0, u) of problem (6), (7) on the half-open interval
[T0,+∞). Moreover, q ∈ C([T0,+∞);L2(S2)), 0 � q(t) � Q(‖q0‖L∞(S2)) a.e. for t ∈ [T0,+∞),
and for each ε > 0 it is possible to find α = α(ε, ‖q‖L∞([T0,+∞))×(S2)), 0 < α � 1, and C =
C(ε, ‖q‖L∞([T0,+∞))×S2) � 0 such that q ∈ Cα([T0 + ε,+∞)) × S

2 and ‖q‖Cα([T0+ε,+∞))×(S2) � C.

In addition, we have the following fact.

Lemma 2. Assume that all conditions of Theorem 1 are satisfied. If sequences {qm} ⊆ L∞(S2)
and {um} ⊆ U weakly converge in L2(X), i.e., qm ⇀ q0 and um ⇀ u0, then the solutions
q = q(t; qm, um) of the Cauchy problem (6), (7) have the weak convergence

lim
m→+∞

q(· ; qm, um) = q(· ; q0, u0)

in L2([T0, T1);W
1,2(X)) and in the norms ‖ · ‖C([T0+ε,T1)×X) for any ε ∈ (0, T1 − T0).

Proof. By assertion (a) of Theorem 1, for m = 1, 2, . . . there exists a unique controlled solution
q(t; qm, um) on the half-open interval [T0, T1). Since the sequence {‖qm‖L∞(S2)} is bounded (see
Remark 1), we obtain

0 � q(t; qm, um) � Q

(
sup

(m=0,1,...
‖qm‖L∞(S2)

)
, t ∈ [T0, T1), m = 1, 2, . . . .

Therefore, based on the a priori estimates for the solutions of linear second-order parabolic equa-
tions [8, ch. VI, §1] and [9, §1.5], there exists a constant C1 such that

‖q(· ; qm, um)‖
L2
(
(T0,T1);W 1,2(X)

) � C1, m = 1, 2, . . . ; (15)

by assertion (a) of Theorem 1, for ε ∈ (0, T1 − T0) it is possible to find C2 and 0 < α � 1 such that

‖q(· ; qm, um)|[T0+ε,T1)×X ‖Cα([T0+ε,T1)×X)� C2, m = 1, 2, . . . . (16)

Due to (15) and the Eberlein–Šmulyan theorem (see [24, App. to Ch. V, §4], the sequence
{q(· ; qm, um)} is sequentially weakly precompact in L2

(
(T0, T1);W

1,2(X)
)
because this space is

reflexive [17, Ch. III, §1]. In turn, due to (16) and the Arzelá–Ascoli theorem, the sequence
{q(· ; qm, um)|[T0+ε,T1)×X} is sequentially precompact in the norms ‖ · ‖C([T0+ε,T1)×X). Hence, from
{q(· ; qm, um)} it is possible to select a subsequence {q(· ; qml

, uml
)} that weakly converges to the

limit function

q̃(t) = lim
m→+∞

q(t; qml
, uml

) ∈ L∞([T0, T1);L
∞(X))

in L2((T0, T1);W
1,2(X)) and in the norms ‖ · ‖C([T0+ε,T1)×X) for any ε ∈ (0, T1 − T0).

For q0 = qml
and u = uml

, the solution of problem (6), (7) is defined by

〈q(· ; qml
, uml

), p〉(t) +
t∫

T0

(
〈dq(· ; qml

, uml
), dp〉L2(T ∗S2) − 〈q(· ; qml

, uml
), p′〉

)
(τ)dτ

= 〈qml
, p〉(0) +

t∫
T0

〈(A− uml
)q(· ; qml

, uml
)−Bq2(· ; qml

, uml
), p〉(τ)dτ.
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Passing to the limit as l → +∞ [29, Ch. 1, §5] yields

〈q̃, p〉(t) +
t∫

T0

(〈dq̃, dp〉L2(T ∗S2) − 〈q̃, p′〉)(τ)dτ = 〈q0, p(0)〉+
t∫

T0

〈(A− u0)q̃ −Bq̃2, p〉(τ)dτ,

i.e., the limit function q̃ is the solution of problem (6), (7) on [T0, T1) with the initial value q0 and
the stationary control u0. By assertion (a) of Theorem 1, the solution of problem (6), (7) is unique
and, consequently, q̃(t) = q(t; q0, u0). The proof of Lemma 2 is complete.

5.2. Proof of Assertions (a) and (b)

Assertion (a) is a corollary of Lemma 1.

Assertion (b) is established by induction on N = 1, 2, . . . . For N = 1, the desired re-
sult follows from Lemma 2 for [T0, T1) = [0, T ). Assume that it is true for N � 1. Then
the sequence {q(NT−; qm, um, sm)} converges to q(NT−; q0, u0, s0) in ‖ · ‖C(X); therefore,
{smq(NT−; qm, um, sm)} weakly converges to s0q(NT−; q0, u0, s0) in L2(X) [29, Ch. 1, §5]. By
Lemma 2, for [T0, T1) = [NT, (N + 1)T ), we arrive at the weak convergence

lim
m→+∞

q(· ; smq(NT−; qm, um, sm), um, sm) = q(· ; s0q(NT−; q0, u0, s0), u0, s0)

in L2((0, T );W 1,2(X)) and in the norms ‖ · ‖C([ε,T )×X) for any ε ∈ (0, T ). Thus, the desired result
holds for (N + 1) as well, and the proof is complete.

5.3. Proof of Assertion (c)

We choose an arbitrary number r ∈ (0,+∞) and consider the closed function interval

[0, Q(r)]L∞(X) = {w ∈ L∞(X)|0 � w � Q(r)a.e.},
where Q is the function (11). By Lemma 1, the Poincaré operator

P u
[T0,T1)

: [0, Q(r)]L∞(X) � w → q(T1;w, u) ∈ C(X)

is well defined, where q = q(t;w, u) is the solution of problem (6), (7) on the half-open interval
[T0,+∞) with the initial value q0 = w and the admissible control u ∈ U (10); cf. [33, Ch. III, §21].
In addition,

0 = P u
[0,T

2
)
0, P u

[0,T
2
)
Q(r) � Q(r), 0 = P u

[T
2
,T )

0, P u
[T
2
,T )
Q(r) � Q(r)

due to Remark 2 and the comparison principle for weak solutions [9, Sec. 2.1.2], and, consequently,

P u
[0,T

2
)
([0, Q(r)]L∞(X)) ⊆ [0, Q(r)]L∞(X),

P u
[T
2
,T )

([0, Q(r)]L∞(X)) ⊆ [0, Q(r)]L∞(X).
(17)

For the admissible controls s ∈ S (10), we have 0 � s � 1 a.e., therefore

s[0, Q(r)]L∞(X) ⊆ [0, Q(r)]L∞(X). (18)

Thus, the composition of the Poincaré operator and multiplication by s is well-defined:

S : [0, Q(r)]L∞(X) � v → P u
[0,T

2
)
sP u

[T
2
,T )
v ∈ [0, Q(r)]L∞(X). (19)
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Obviously, 0 is an equilibrium for S, i.e., S(0) = 0, whereas Q(r) a super-equilibrium, i.e.,
S(Q(r)) � Q(r) [33, Ch. I, §1]. According to assertion (a) and the Arzelá–Ascoli theorem, the
operator S is continuous and has a precompact image. By the comparison principle, S strongly
preserves order on [0, Q(r)]L∞(X) [33, Ch. I, §1]. Due to the strict concavity of the right-hand side
of equation (6), the operator S is strictly sublinear, i.e., βS(v) < S(βv) for v ∈ [0, Q(r)]L∞(X)\0
and 0 < β < 1. Hence, for any r ∈ (0,+∞), S has a unique fixed point v0 = Sv0 on the closed
interval [0, Q(r)]L∞(X) such that

lim
k→∞

‖Sk(v)− v0‖L∞(X) = 0 (20)

for any v ∈ [0, Q(r)]L∞(X)\0 [33, Ch. I, §5]. In view of the inclusions (17) and (18), the function

q∞,0 = sP u
[T
2
,T )
v0 ∈ [0, Q(r)]L∞(X); (21)

since equation (6) is autonomous (all its coefficients do not depend on t), it follows that

sP u
[0,T )q∞,0 = sP u

[0,T )

(
sP u

[T
2
,T )
v0

)
= sP u

[T
2
,T )

(
P u
[0,T

2
)
sP u

[T
2
,T )
v0

)
= sP u

[T
2
,T )
Sv0 = sP u

[T
2
,T )
v0 = q∞,0.

Thus, q∞,0 is a fixed point of the operator sP u
[0,T ). As q∞(t;u, s) we choose the solution q(t; q∞,0, u, s)

of problem (6), (7), (8) with the initial value q∞,0 (21). By assertion (a), this solution exists, is
unique, and satisfies the estimate 0 � q∞(t;u, s) � Q(r) on the half-open interval [0,+∞); more-
over, it satisfies the periodicity condition (9) because q∞,0 is a fixed point with respect to the
operator sP u

[0,T ).

Let q(t; q0, u, s) be the solution of problem (6), (7), (8) with q0 ∈ [0, Q(r)]L∞(X)\0. Then

w(t) = ±(q(t; q0, u, s)− q∞(t;u, s))

satisfies the weak maximum principle on the half-open intervals [kT, k(T + 1)), k = 1, 2, . . .
[8, Ch. VI, §7] and, consequently,

|q(t; q0, u, s)− q∞(t;u, s)| � |q(kT ; q0, u, s)− q∞(kT ;u, s)|, t ∈ [kT, k(T + 1)).

Since q(kT ; q0, u, s) = (sP u
[0,T ))

kq0 and q∞(kT ;u, s) = (sP u
[0,T ))

kq∞,0, it follows that

‖q(t; q0, u, s)− q∞(t;u, s)‖C(X) �
∥∥∥ (sP u

[0,T )

)k
q0 −

(
sP u

[0,T )

)k
q∞,0

∥∥∥
L∞(X)

;

by the construction of S (19) and the fixedness of q∞,0 (21) with respect to sP u
[0,T ), we obtain

‖q(t; q0, u, s)− q∞(t;u, s)‖C(X) �
∥∥∥∥sP u

[T
2
,T )
Sk−1P u

[0,T
2
)
q0 − sP u

[T
2
,T )
v0

∥∥∥∥
L∞(X)

, (22)

t ∈ [kT, k(T + 1)), because (sP u
[0,T ))

k = sP u
[T
2
,T )

(
P u
[0,T

2
)
sP u

[T
2
,T )

)k−1

P u
[0,T

2
)
. According to (17),

P u
[0,T

2
)
q0 ∈ P u

[0,T
2
)
([0, Q(r)]L∞(X)\0) ⊆ [0, Q(r)]L∞(X)\0;

due to (22), (20), the continuous operator sP u
[T
2
,T )
, and the arbitrary choice of r ∈ (0,+∞), we

finally arrive at assertion (a).
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5.4. Proof of Assertion (d)

By Lemma 1, there exist constants C and α, 0 < α � 1, such that

‖q∞(T−;um, sm)‖Cα(X) � C

uniformly in m = 1, 2, . . . . According to the Arzelá–Ascoli theorem, it is therefore possible to select
a subsequence {q∞(T−;uml

, sml
)} from {q∞(T−;um, sm)} that will converge in the norm ‖ · ‖C(X)

to the limit function

qT = lim
l→+∞

q∞(T−;uml
, sml

). (23)

It suffices to establish the equality

qT = q∞(T−;u0, s0) (24)

regardless of the choice of {q∞(T−;uml
, sml

)}. In this case, the entire sequence {q∞(T−;um, sm)}
will converge to q∞(T−;u0, s0) in the norm ‖ · ‖C(X) and {smq∞(T−;um, sm)} will weakly converge
to s0q∞(T−;u0, s0) in L

2(X) [29, Ch. 1, §5]; in the final analysis, Lemma 2 will imply assertion (d)
since q∞ satisfies conditions (8) and (9).

By conditions (8) and (9), q∞(0;uml
, sml

) = sml
q∞(T−;uml

, sml
); hence,

q∞(t;uml
, sml

) = q(t; sml
q∞(T−;uml

, sml
), uml

, sml
), t ∈ [0, T ),

as the solution of problem (6), (7) is unique (Lemma 1). Due to (23), the subsequence
{sml

q∞(T−;uml
, sml

)} weakly converges in L2(X) to s0qT . According to Lemma 2, passing to
the limit on the right-hand side of this equality yields

qT = q(T−; s0qT , u0, s0).

Thus, the solution q = q(t; s0qT , u0, s0) satisfies the periodicity condition

q(0; s0qT , u0, s0) = s0q(T−; s0qT , u0, s0),

i.e., is a periodic solution of problem (6), (8). Hence, considering Remark 3, either q∞(T−;u0, s0) =
q(T−; s0qT , u0, s0) (making (24) valid) or q∞(T−;u0, s0) > 0, q(T−; s0qT , u0, s0) = 0, which is
equivalent to the conditions

‖q∞(T−;u0, s0)‖C(X) > 0, qT = 0. (25)

We proceed by contradiction, showing that under conditions (25), the assertion

lim
k→+∞
l→+∞

q(kT−; q0, uml
, sml

) = 0, q0 > 0, (26)

and its negation are simultaneously false; see items 1) and 2) below.

1) Assume that conditions (25) hold and assertion (26) is true.
By assertion (a), for ε > 0 there exists a natural number k0 = k0(ε) such that

‖q(kT−; q0, u0, s0)− q∞(T−;u0, s0)‖C(X) < ε, k = k0, k0 + 1, . . . .

By assertion (b), for ε > 0 and k = 1, 2, . . . there exists a natural number l0 = l0(ε, k) such that

‖q(kT−; q0, uml
, sml

)− q(kT−; q0, u0, s0)‖C(X) < ε, l0, l0 + 1, . . . .
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Consequently, based on

‖q(kT−; q0, uml
, sml

)‖C(X) � ‖q∞(T−;u0, s0)‖C(X)

− ‖q(kT−; q0, u0, s0)− q∞(T−;u0, s0)‖C(X)

− ‖q(kT−; q0, uml
, sml

)− q(kT−; q0, u0, s0)‖C(X),

for any ε > 0, k = k0(ε), k0(ε) + 1, . . . and l = l0(ε, k), l0(ε, k) + 1, . . ., we have

‖q(kT−; q0, uml
, sml

)‖C(X) � ‖q∞(T−;u0, s0)‖C(X) − 2ε.

Choosing ε =
‖q∞(T−;u0,s0)‖C(X)

4 > 0 in accordance with (25), we derive the estimate

‖q(kT−; q0, uml
, sml

)‖C(X) �
‖q∞(T−;u0, s0)‖C(X)

2
,

which contradicts assertion (26). Thus, conditions (25) and assertion (26) lead to a contradiction.
2) Assume that conditions (25) hold and assertion (26) is false. Then for some initial q0 > 0 (7),

there exists a number δ0 > 0 such that, for N = 1, 2, . . . , it is possible to find numbers k0 =
k0(N) � N and l0 = l0(N) � N for which∥∥∥q(k0(N)T−; q0, uml0(N)

, sml0(N)
)
∥∥∥
C(X)

� δ0. (27)

Due to (23) and (25), for any ε > 0 there exists a number l1 = l1(ε) such that

‖q∞(T−;uml
, sml

)‖C(X) < ε, l = l1, l1 + 1, . . . .

By assertion (a), for ε > 0 and l = 1, 2, . . . there exists a natural number k1 = k1(ε, l) such that

‖q(kT−; q0, uml
, sml

)− q∞(T−;uml
, sml

)‖C(X) < ε, k = k1, k1 + 1, . . . .

Therefore, for 0 < δ � δ0 and l = l1
( δ
2

)
, l1

( δ
2

)
+ 1, . . . and k = k1

( δ
2 , l

)
, k1

( δ
2 , l

)
+ 1, . . . , we have∥∥∥q (k0(N)T−; q0, uml0(N)

, sml0(N)

)∥∥∥
C(X)

‖q(kT−; q0, uml
, sml

)‖C(X) (28)

� ‖q(kT−; q0, uml
, sml

)− q∞(T−; q0, uml
, sml

)‖C(X)

+ ‖q∞(T−; q0, uml
, sml

)‖C(X) < δ.

From (27) and (28) it follows that, for N = l1
(
δ
2

)
, l1

(
δ
2

)
+ 1, . . . there exists a number

k2 = k2(δ, k0(N), l0(N)) ∈
{
k0(N), . . . , k1

(
δ

2
, l0(N)

)
− 1

}
for which ∥∥∥q (k2(δ, k0(N), l0(N))T−; q0, uml0(N)

, sml0(N)

)∥∥∥
C(X)

� δ, (29)∥∥∥q ((k2(δ, k0(N), l0(N)) + k)T−; q0, uml0(N)
, sml0(N)

)∥∥∥
C(X)

< δ, k = 1, 2, . . . .

Consider the sequence {qN} composed of

qN = q(k2(δ, k0(N), l0(N))T−; q0, uml0(N)
, sml0(N)

), N = l1

(
δ

2

)
, l1

(
δ

2

)
+ 1, . . . .
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By assertion (a), there exist constants C and α, 0 < α � 1, such that ‖qN‖Cα(X) � C uniformly
in N.

Based on the Arzelá–Ascoli theorem, we select a subsequence {qNβ
} from the sequence {qN}

that converges in the norm ‖ · ‖C(X) to the limit function

q0,∞ = lim
β→+∞

qNβ
.

In view of the first inequality in (29), ‖q0,∞‖C(X) � δ. Since the sequence
{
sml0(Nβ )

qNβ

}
weakly

converges in L2(X) to s0q0,∞ [29, Ch. 1, §5], by assertion (b), for an arbitrary number ε > 0 and
k = 1, 2, . . . there exists β0 = β0(ε, k) such that∥∥∥q(kT−; sml0(Nβ)

qNβ
, uml0(Nβ)

qNβ
, sml0(Nβ)

)
− q(kT−; s0q0,∞, u0, s0)

∥∥∥
C(X)

< ε (30)

for β = β0, β0 + 1, . . . . By assertion (c), for ε > 0 there exists k3 = k3(ε) such that

‖q(kT−; s0q0,∞, u0, s0)− q∞(T−;u0, s0)‖C(X) < ε, k = k3, k3 + 1, . . . . (31)

Hence, the following results are the case. First, since∥∥∥q (kT−; sml0(Nβ)
qNβ

, uml0(Nβ )
, sml0(Nβ )

)∥∥∥
C(X)

� ‖q∞(T−;u0, s0)‖C(X)

− ‖q(kT−; s0q0,∞, u0, s0)− q∞(T−;u0, s0)‖C(X)

−
∥∥∥q(kT−; sml0(Nβ )

qNβ
, uml0(Nβ )

, sml0(Nβ )

)
− q(kT−; s0q0,∞, u0, s0)

∥∥∥
C(X)

,

considering (31) and (30), for k � k3(ε) and β � β0(ε, k) we have∥∥∥q (kT−; sml0(Nβ )
qNβ

, uml0(Nβ)
, sml0(Nβ)

)∥∥∥
C(X)

� ‖q∞(T−;u0, s0)‖C(X) − 2ε. (32)

Second, by the construction of qN and the autonomous property of equation (6),

q
(
kT−; sml0(Nβ)

qNβ
, uml0(Nβ )

, sml0(Nβ )

)
= q

(
(k2(δ, k0(N), l0(N)) + k)T−; q0, uml0(N)

, sml0(N)

)
,

and the second inequality in (29) gives∥∥∥q (kT−; sml0(Nβ )
qNβ

, uml0(Nβ )
, sml0(Nβ )

)∥∥∥
C(X)

< δ, k = 1, 2, . . . . (33)

From (32) and (33), for k = k3(ε) and β = β0(ε, k3(ε)), we derive the inequality

‖q∞(T−;u0, s0)‖C(X) < δ + 2ε.

With

ε =
‖q∞(T−;u0, s0)‖C(X)

4
and δ = min

{‖q∞(T−;u0, s0)‖C(X)

4
, δ0

}
,

the first condition in (25) leads to the contradictory estimate ‖q∞(T−;u0, s0)‖C(X) < 0. Thus,
conditions (25) and the negation of assertion (26) bring to a contradiction as well.
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